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Lotka-Volterra Modeling: The Predator-Prey Dynamics of Lynx canadensis and Lepus
americanus

Introduction:

The fascinating cycles of snowshoe hares and Canadian lynx have captured the attention
of ecologists for decades. Before predator-prey and ten-year cycles were well established in
ecology, these cycles violated one of the implicit assumptions in the field: that within nature
there is balance. Population cycles driven by predation have been largely understood
mathematically by using the Lotka-Volterra predator-prey model. The differential equation was
independently derived by Vito Volterra and Alfred Lotka, and is the simplest model of
predator-prey interactions. Predator-prey relationships are seen as the building blocks of
ecosystems, and therefore understanding them allows for a better understanding of ecosystems
as a whole.

The data used in this study were first published in the Journal of Animal Ecology in
1942 by Charles Elton and Mary Nicholson (Elton and Nicholson 1942). Elton and Nicholson
created this dataset by extrapolating from fur trading records that were made by the Hudson’s
Bay Company. This meticulous record has data on the number of furs traded at different posts
spread across Canada. The population cycles drawn from these data have become extremely
famous, and are often cited as a textbook example of predator-prey oscillations (Zhang et al
2003, 2015, Stenseth et al. 1997, Krebs et al. 2001).

In 1831, the manager of a Hudson’s Bay Company post wrote to the head office in
London to report that the local Ojibway people were starving due to a shortage in “rabbits”
(Krebs et al. 2001). These shortages occurred in the company’s record approximately every 10
years. Ten-year cycles of animal populations were first analyzed quantitatively when biologists,
such as Elton and Nicholson, began to plot these fur trading records.

The purpose of this study is to attempt to create an accurate predator-prey model that
could predict hare-lynx population oscillations using the Lotka-Volterra equation and historic
population data. An accurate and validated model of hare-lynx population cycles would shed

light on the inner workings of the North American boreal forest ecosystem.
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Assumptions

Being that there are so many environmental and trophic pressures on both the Canadian lynx

and especially the snowshoe hare, there are several assumptions that must be made to simplify

the population cycle. For the Lotka-Volterra model, we assume the following:

1.

Hare always have ample food

2. Lynx only eat hare, hare are only eaten by lynx

3. The rate of change of a population is proportional to its size

4. Lynx will always eat hare

5. The environment does not favor any population over another
Equation

There are many versions of the Lotka-Volterra predator-prey equation. This study uses the

following, taken from Bowman & Hacker’s Ecology (2020):

AN
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dt



In these equations, N represents the number of hare individuals and P represents the
number of lynx individuals. The equation for change in the prey population over time (dN/dt)
assumes that when lynx are absent (P = 0), the hare population grows exponentially, which is
covered by assumptions 1 and 2 above. When lynx are present (P =/0), the rate at which they kill
hare depends in part on how frequently predators and prey encounter one another. This
frequency is expected to increase with the number of hare (V) and with the number of lynx (P),
so a multiplicative term (INP) is used in the equation for dN/dt. The rate at which lynx kill prey
also depends on the efficiency with which lynx can capture prey, which is represented by the
constant a. The overall rate at which lynx kill hare is therefore aNP.

Assumption 2 means that lynx will starve when there are no hare. Following this, the
equation for change in the predator population over time (dP/dt) assumes that in the absence of
hare (INV = 0), the number of lynx decreases exponentially with a mortality rate of m. When hare
are present (IN =/0), individuals are added to the lynx population according to the number of
hare that are killed (alNP) and the efficiency with which hare are converted into lynx offspring
(represented by the constant b). Thus, the rate at which individuals are added to the predator
population is balNP.

Software and calculations

First, iterative calibration will be done using three different samples: the first 20 years,
the first 55 years, and the first 79 years of the dataset. The calibration data that provides the
most accurate model will be found by comparing reduced chi-square values. The remaining
years will be used to validate the model. Validation will consist of plotting the model on top of
the empirical data.

All figures, models, and calculations were made in Python version 3.9.1 using the pandas,
matplotlib, numpy, seaborn, scipy and Imfit libraries. Lmfit is a python package inspired by (and
named after) the Levenberg-Marquardt algorithm, and is used as an interface for non-linear
optimization and curve-fitting problems. The Imfit package builds on the optimization methods

of scipy, and is used in this study for curve-fitting.

All libraries and packages used are shown below:



- numpy as np
- pandas as pd

- matplotlib

- matplotlib.pyplet as plt

- seaborn
1 scipy.integrate import odeint
om Lmfit import Model, Parameters, report_fit, minimize

Parameters are stored in a dictionary with their initial guesses. The function ‘lvmodel’ below is

used to fit the model, and explicitly unpacks each Parameter value:

{params, %, y, data):
"""l optka Voltera model with data subtracted"™"
params["'r"]
params["a"]
params['b"]
params["'m"]

modelx = r*x - a*x*y
modely = b*a*x*y - m*y

modelx = modelx - datal:,@]
modely = modely - data[:,1]

model = modelx, modely
return model

params = Parameters()
params.add{"r", walue
params.add{"a”, wvalue
params.add("'b", walue
params.add{"'m", wvalue

The minimize function is used to find the curve of best fit. The function takes an objective
function to be minimized (“lvmodel”), a dictionary containing the model’s parameters
(“params”), and several arguments (“x”,” y”, and “data”) including the fitting method, which for
this problem is the least squares method (“leastsq”). It returns an array, which is stored

(“result”). An error report is generated by the report_fit function, as seen below:

result = minimize{lvmodel, params, args={x, y, data), method = 'leastsq")

final = data + result.residual.reshape(data.shape)

report_fit(result)
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Validation
The reduced chi-square value decreased as the amount of calibration data increased. The
confidence interval in the calculated variables increased as calibration data increased. Because

of these two issues, the second calibration set was selected as an (un)happy-medium for

validation.
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Code used for validation:

df = pd.read_csv{"total_hare_lynx_data.csv")
df = df[df["Year"] >= 196@]

year_data = df["Year"]
hare_data = df['Hare"]
lynx_data = df["Lynx"]

np.linspace{@, 35)

1¢.298
@.250
@.470
1.335

start_year = 1990

prey = 12.82

predator = 7.13

pops = [prey, predator]

pars = [r, a, b, m]

(pops, t, pars):
"'"Lotka-Volterra model”""
pops [@]
pops[1]

pars[@]
pars[1]
pars[2]
pars[3]

dndt = r*n - a*n*p
dpdt = b*a*n*p - m*p

return{[dndt, dpdt])
odeint(lvmodel, pops, t, args = (pars,))

t+start_year

.style.use( seaboern-darkgrid”)

.plot{year_data, hare_data, "+", label = "Data: Hare")
.plot(year_data, lynx_data, "+", label = "Data: Lynx")
.plot(t, y[:,8], 'b', label = "Model: Hare')

.plot(t, y[:,1]1, 'r', label = "Model: Lynx')

x1lim{ [1968,1935]1)

.yticks([@, 50, 1@, 1587, labels=['8", '58", "i@@", "15@'])
.legend()

.show()

Discussion:
Neither the calibration nor the validation of the model showed accuracy. All calibration sets had

a massive reduced chi-square value, and were therefore not good fits. The variables were
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inaccurately backed out of the calibration data, as they had large confidence intervals and
resulted in a model that immediately broke down. Based on this information, my model cannot
be validated.
Alternative hypotheses
Despite the hare-lynx population cycles being cited as a textbook example of predator-prey
oscillations, multiple other studies have shown that a regression fit to the Lotka-Volterra model
was poor (Zhang 2007). An alternative to the hare-lynx interaction hypothesis is the plant-hare
interaction hypothesis, which states that the cycle results from the interaction between hares
and their winter food supply (Zhang 2007 (Fox & Bryant 1984). Under the plant-hare
hypothesis, population crashes are triggered by a shortage of palatable winter forage, and the
duration of cycles is determined by the grow-back time of the browse. Following this, the
oscillations of lynx populations are not causal, but consequential.

Another hypothesis, the plant-hare-lynx interaction hypothesis, views the cycle as
affected by the relationship between three trophic levels. Analysis done by Stenseth et al. (1997)
found that the classic view of a symmetric predator-prey interaction is too simplistic for these

data, and that “the dominant dimensional structure of the hare series is hypothesized to be due
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Fig.6 - Food web of Lepus americanus, taken from Stenseth et al. 1997.

As shown, hares feed on a variety of plants and are eaten by a wide array of predators.
Lynx, although considered specialists, will also utilize other prey species. The analysis of
Stenseth et al. (1997) suggests that the dual-trophic hare-lynx interaction is too simplistic.
Zhang et al. (2007) found no significant predation effect for both hare and lynx populations, and
concluded that “self-regulation or density dependence may be the major forces driving

population cycles of hare and lynx for this time series.” However, previous studies have



demonstrated a predation effect in hare-lynx cycling (Stenseth et al. 1997, 2004). To explain
these inconsistencies, there are many factors that could be affecting the data’s accuracy and the

cycles of the species.

Data quality and accuracy

Because this historic time series is used in so many studies and is derived from fur
records, it may have been edited in different ways. A number of disturbances (such as scale and
fur price fluctuation in the market) could have affected the data quality. Predation effects would
be more obvious at local scales but could be reduced at larger scales if the data are not
appropriately combined (Zhang 2007). Hare and lynx population outbreaks also had a time lag
among neighboring sites which was probably caused by surplus killing from lynx or other
predators in the decline phase of a hare cycle (Krebs at al. 2001).

There is debate about the methods used to model the historic data set as well. Nedorezov
(2016) rejected the use of the least-squares method:

“The least-squares method is rejected due to a number of factors. These are the
absence of criteria for selecting the type of minimized functional (which, as a rule,
has nothing to do with the biological problem, or the available data, or the model)
and the final result, i.e., the decision on the applicability or inapplicability of the
model to data approximation is rendered on the basis of properties of the single
point of the space of parameters (the global minimum of the functional).
Consequently, there is an abundance of incorrect results from nonlinear models.”
(Nedorezov 2016)

Climatic influence

The exact role of climate in hare-lynx population cycles remains uncertain. Since the
oscillations of hare and lynx populations are so strongly synchronized across Canada, it has been
suggested, and since rejected, that large-scale meteorological factors (like sunspots) and climate
forcing could be responsible (Zhang et al. 2007, Elton & Nicholson 1942). The models with
predation but without climate forcing can produce only damped oscillations, but models that
include climate forcing as well as sunspot signals can produce stable cycles (Yan et al. 2013).

The North Atlantic Oscillation (NAO), El Nino-Southern Oscillation, and other large
climate phenomena can strongly impact local weather patterns and influence population
dynamics of small mammals (Yan et al. 2013, Stenseth et al. 2004, Zhang et al. 2003). Yan et al.
(2013) studied local and global climate to identify major pathways that influence the hare and

lynx system:



“Our results clearly indicate that the observed 10-year cycle is the result of joint
forces of both intrinsic and external factors. Asymmetric predation, density
dependence, and time lag play key roles in producing the damped oscillations,
while the external climatic factors are essential in the appearances and intervals
of sustained cycles of the hare and lynx system in Canada. Our results revealed
the pathways from global climate to lynx populations through local climate, and
highlighted the significance of delayed effects of climate factors on hare and lynx
populations. Future studies should focus on investigating the underlying
mechanism of the observed pathways and the population declines of lynx caused
by climate warming.” (Yan et al. 2013)

Biotic factors

There are major reproductive differences between hare and lynx that the Lotka-Volterra
model doesn’t account for. One of which being that hare breed like rabbits: Snowshoe hare can
have three or four litters over a summer, with five leverets on average in each litter. Sexual
maturity is reached at 1 year of age (Krebs et al. 2001). Lynx have much longer life spans than
hare, and young lynx need approximately 10 months’ parental care and 2 years to attain adult
size. (Yan et al. 2013).

In Yan et al. 's study (2013), direct density dependence was found in hare population and
a 2-3 year delayed density dependence was found in lynx populations. They speculated that this
delayed density dependence in the lynx population could be caused by the necessary time for
lynx’s rearing, reproduction and maturity. Density dependence is mainly caused by intraspecific
competitions for resources, which is a factor not included in the Lotka-Volterra model. Delayed
density dependence produces damped oscillations in a Lotka-Volterra model, which is a
problem for accuracy (Yan et al. 2013, Weisberg and Reisman 2008).

There is also the impact of hunting as a factor on the lynx population. One study
analyzed the lynx population series to look for evidence of ecosystem bifurcation, which is
defined as an abrupt or persistent regime shift that affects several trophic levels and results from
environmental changes. Javier et al. (2000) studied the sudden shifts in the amplitude of
oscillations from the Hudson Bay Company lynx time series, and found evidence that an
increased trapping pressure aligned with amplitude fluctuations in lynx population. Being that
this data came from fur trading records and our model assumes lynx have no predators, this

contradiction will obviously result in at least some inaccuracy.

Conclusion
Applying a Lotka-Volterra predator-prey equation to this historic lynx and hare

population data will result in a model that is only partially correct, because it excludes many



factors that influence the oscillation of both populations: climatic pressures, reproductive
differences, human impact (hunting), and the inclusion of a third trophic level. The biological
impacts of these three trophic levels ripple across many other species of predators and prey in
the boreal forests of North America (Krebs et al. 2001). Creating a more accurate model with
these missing factors included is an important next step, as the limits of lynx and hare resilience
are still unknown. Until this is better understood, anthropogenic impacts will continue to

threaten this complex and fascinating system.
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